Martini et al. (2018) – H I Kinematics along the Minor Axis of M82

M82 is one of the best-studied starburst galaxies in the local universe, and is consequently a benchmark for studying star formation feedback at both low and high redshift. We present new VLA H I observations that reveal the cold gas kinematics along the minor axis in unprecedented detail. This includes the detection of H I up to 10 kpc along the minor axis toward the south and beyond 5 kpc to the north. A surprising aspect of these observations is that the line-of-sight H I velocity decreases substantially from about 120 to 50 {km} {{{s}}}-1 from 1.5 to 10 kpc off the midplane. The velocity profile is not consistent with the H I gas cooling from the hot wind. We demonstrate that the velocity decrease is substantially greater than the deceleration expected from gravitational forces alone. If the H I consists of a continuous population of cold clouds, some additional drag force must be present, and the magnitude of the drag force places a joint constraint on the ratio of the ambient medium to the typical cloud size and density. We also show that the H I kinematics are inconsistent with a simple conical outflow centered on the nucleus, but instead require the more widespread launch of the H I over the ∼1 kpc extent of the starburst region. Regardless of the launch mechanism for the H I gas, the observed velocity decrease along the minor axis is sufficiently great that the H I may not escape the halo of M82. The inferred H I outflow rate at 10 kpc off the midplane is much less than 1 {M}ȯ yr‑1.

Martini, Paul; Leroy, Adam K.; Mangum, Jeffrey G.; Bolatto, Alberto; Keating, Katie M.; Sandstrom, Karin; Walter, Fabian
2018, The Astrophysical Journal, 856, 61…856…61M